He, Q., Beveridge, E. H., Vargas, V., Salen, A., & Brown, T. I. (2023). Effects of Acute Stress on Rigid Learning, Flexible Learning, and Value-Based Decision-Making in Spatial Navigation. Psychological Science, 34(5), 552–567. DOI: 10.1177/09567976231155870

He, Q., Liu, J. L., Eschapasse, L., Beveridge, E. H., & Brown, T. I. (2022). A comparison of reinforcement learning models of human spatial navigation. Scientific reports, 12(1), 13923.DOI: 10.1038/s41598-022-18245-1

He, Q., Liu, J.L., Beveridge, E.H., Eschapasse, L., Vargas, V., Brown, T.I. (2022). Episodic memory integration shapes value-based decision-making in spatial navigation. Journal of Experimental Psychology: Learning, Memory and Cognition, E-Pub. DOI:10.1037/xlm0001133

He, Q., Starnes, J., Brown, T.I. (2022). Environmental overlap influences goal-oriented coding of spatial sequences differently along the long-axis of hippocampus. Hippocampus, E-Pub. DOI:10.1002/hipo.23416

Maxim, P., Brown, T.I. (2021). Toward an Understanding of Cognitive Mapping Ability Through Manipulations and Measurement of Schemas
and Stress. Topics in Cognitive Science, E-Pub. DOI: 10.1111/tops.12576

Brown, T.I., He, Q., Aselcioglu, I., Stern, C.E. (2021). Evidence for a gradient within the medial temporal lobes for flexible retrieval under hierarchical task rules. Hippocampus, 31:1003-1019. DOI: 10.1002/hipo.23365

Brown, T.I. (2021). Cognitive Mapping: Anchoring our brain’s sense of space in a dynamic world. Current Biology, 31:R291-R293. DOI: 10.1016/j.cub.2021.01.041

He, Q., Beveridge, E.H., Starnes, J., Goodroe, S.C., & Brown, T.I. (2021). Environmental overlap and individual encoding strategy modulate memory interference in spatial navigation. Cognition, 207:104508 DOI:10.1016/j.cognition.2020.104508 

He, Q., Han, A.T., Churaman, T.A., & Brown, T.I. (2021). The Role of Working Memory Capacity in Spatial Learning Depends on Spatial Information Integration Difficulty in the Environment. Journal of Experimental Psychology: General, 150:666-685. DOI:10.1037/xge0000972

Brown, T.I., Gagnon, S.A., & Wagner, A.D. (2020). Stress Disrupts Human Hippocampal-Prefrontal Function during Prospective Spatial Navigation and Hinders Flexible Behavior. Current Biology, 30:1821-1833 DOI:10.1016/j.cub.2020.03.006.

He, Q., & Brown, T.I. (2020). Heterogeneous correlations between hippocampus volume and cognitive map accuracy among healthy young adults. Cortex, 124:167-175 DOI: 10.1016/j.cortex.2019.11.011.

He, Q., McNamara, T.P., & Brown, T.I. (2019). Manipulating the Visibility of Barriers to Improve Spatial Navigation Efficiency and Cognitive Mapping. Scientific Reports, 9:11567 DOI: 10.1038/s41598-019-48098-0.

He, Q., & Brown, T.I. (2019). Environmental Barriers Disrupt Grid-like Representations in Humans during Navigation. Current Biology, 29:2718-2722 DOI: 10.1016/j.cub.2019.06.072.

van Kesteren, M.T.R., Brown, T.I., & Wagner, A.D. (2018). Learned Spatial Schemas and Prospective Hippocampal Activity Support Navigation After One-Shot Learning. Frontiers in Human Neuroscience, 12:486 DOI: 10.3389/fnhum.2019.00202.

Gagnon, S.A., Waskom, M.L., Brown, T.I., & Wagner, A.D. (2018). Stress Impairs Episodic Retrieval by Disrupting Hippocampal and Cortical Mechanisms of Remembering. Cerebral Cortex, 1:18 DOI: 10.1093/cercor/bhy162.

Goodroe, S., Starnes, J., Brown, T.I. (2018). The Complex Nature of Hippocampal-Striatal Interactions in Spatial Navigation. Frontiers in Human Neuroscience, 12:250 DOI: 10.3389/fnhum.2018.00250.

Brown, T.I., Rissman, J., Chow. T.E., Uncapher, M.R., & Wagner, A.D. (2018). Differential Medial Temporal Lobe and Parietal Cortical Contributions to Real-world Autobiographical Episodic and Autobiographical Semantic Memory. Scientific Reports, 8:6190 DOI:10.1038/s41598-018-24549-y.

Brown, T.I., Uncapher, M.R., Chow, T.E., Eberhardt, J.L., & Wagner, A.D. (2017). Cognitive Control, Attention, and the Other Race Effect in Memory. PLOS ONE, 12:e0173579.​

Brown, T.I., Carr, V.A., LaRocque, K.F., Favila, S.E., Gordon, A.M., Bowles, B., Bailenson, J.N., & Wagner, A.D. (2016). Prospective representation of navigational goals in the human hippocampus. Science, 352:1323-1326.

van Kesteren, M.T.R., Brown, T.I., & Wagner, A.D. (2016). Interactions between memory and new learning: Insights from fMRI multivoxel pattern analysis. Frontiers in Systems Neuroscience, 10:46. doi: 10.3389/fnsys.2016.00046.

Brown, T.I., Staresina, B.P., & Wagner, A.D. (2015). Noninvasive functional and anatomical imaging of the human medial temporal lobe. In E. Kandel, Y. Dudai, & M.R. Mayford (Eds.), Cold Spring Harbor Perspectives in Biology, 7:a021840.

van Kesteren, M. & Brown, T.I. (2014). The medial prefrontal cortex and the deceptiveness of memory. The Journal of Neuroscience, 34:13569-13570.

Brown, T.I., Hasselmo, M.E., & Stern, C.E. (2014). A high-resolution study of hippocampal and medial temporal lobe correlates of spatial context and prospective overlapping route memory. Hippocampus, 24:819-839.

Brown, T.I., Whiteman, A.S., Aselcioglu, I., & Stern, C.E. (2014). Structural differences in hippocampal and prefrontal gray matter volume support flexible context-dependent navigation ability. The Journal of Neuroscience, 34:2314-2320.

Sherrill, K.R., Erdem, U.M., Ross, R.S., Brown, T.I., Hasselmo, M.E., & Stern, C.E. (2013). Hippocampus and retrosplenial cortex combine path integration signals for successful navigation. The Journal of Neuroscience, 33:19304-19313.

Brown T.I. & Stern C.E. (2013). Contributions of medial temporal lobe and striatal memory systems to learning and retrieving overlapping spatial memories. Cerebral Cortex, 24:1906-1922.

Brown T.I., Ross R.S., Tobyne S.M., & Stern C.E. (2012). Cooperative interactions between hippocampal and striatal systems support flexible navigation. Neuroimage, 60:1316-1330.

Brown T.I., Ross R.S., Keller J.B., Hasselmo M.E., & Stern C.E. (2010). Which Way Was I Going? Contextual Retrieval Supports the Disambiguation of Well Learned Overlapping Navigational Routes. The Journal of Neuroscience, 30:7414-7422.

Ross R.S, Brown T.I., & Stern C.E. (2009). The Retrieval of Learned Sequences Engages the Hippocampus: Evidence From fMRI. Hippocampus, 19:790-799.